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ABSTRACT 
The purpose of this study is to investigate the performance of a combined Shewhart-CUSUM chart for binomial 

data, when compared to individual Shewhart and CUSUM control charts for large shifts in the process mean. 

The comparison is performed by analyzing several ARL (Average Run Length) measures. The ARL of the 

combined control charts is identified through Monte Carlo simulations. The results confirm the effectiveness of 

the combined charts to increase the sensitivity of CUSUM schemes. The Shewhart limits make it possible to 

indicate large changes in the process mean. And, there is a region of process shifts where the combined chart 

displays better performance than in individual procedures. Therefore, for the detection of only large alterations 

in the process mean, an individual CUSUM or a Shewhart chart is recommended. 

Keywords - Combined Shewhart-CUSUM chart; Binomial data; Average Run Length. 

 

I. INTRODUCTION 
The traditional Shewart charts are the most 

widely known and applied.  The simplicity of the 

decision rule conditioned merely on analyzing the 

last point signaled on the chart facilitates evaluating 

if such a point signals special cause. However, the 

major disadvantage is utilizing only the information 

about the process contained in the last point and 

ignoring any information given by the entire 

sequence of points.  This characteristic makes these 

control charts insensitive to slight changes in the 

process, on the order of 1.5 standard deviations or 

less [1]. 

Although very efficient, these charts are not the 

only tools available.  In some cases, other types of 

control charts may advantageously complement or 

substitute the traditional Shewhart scheme.  Such is 

the case of the CUSUM (Cumulative Sum) and the 

EWMA (Exponentially Weighted Moving Average) 

control charts.  These charts are indicated to monitor 

processes subject to small shifts, whose decision 

concerning the statistical control state is based on 

information accumulated from previous samples and 

not only the last one.  With these charts, it is 

possible to signal small shifts more quickly, as well 

as identify the approximate moment in time in which 

a change in the process occurs.  However, if the 

magnitude of the change were unknown or if there 

were an alteration over time, none of the previously-

mentioned charts standing individually will offer 

adequate performance concerning both small and 

large shifts.  But, it is possible to combine multiple 

charts in order to monitor diverse magnitudes of 

change, adding Shewhart control limits to the 

CUSUM control chart in order to detect both small 

and large shifts [2]. 

The purpose of this study is to investigate the 

performance of a combined Shewhart-CUSUM chart 

for data with a binomial distribution when compared 

to individual Shewhart and CUSUM control charts 

for large shifts in the process mean. 

This paper is structured as follows. Section 2 

briefly describes the combined Shewhart-CUSUM 

chart.  Section 3 provides the methodological 

procedures used.  Section 4 presents the results and 

analysis. Finally, in Section 5 there are concluding 

remarks. 

 

II. COMBINED SHEWHART-CUSUM 

CHART 
A combined Shewhart-CUSUM chart 

incorporates observed values, Shewhart control 
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limits, the CUSUM statistic, and the CUSUM 

decision interval all on the same axis.  More 

importantly, it is the probabilistic combination of 

two control charts into a single chart where control 

limits must be recalculated taking into account the 

sensitivity of false alarm rates to combination 

schemes. The combination of charts was proposed to 

improve the sensitivity of the CUSUM over a wide 

range of shifts in the process mean and has wide 

practical applications [1]  [3] [4] [5] [6] [7] [8]. The 

literature has presented few studies relating to 

combined charts for attributes data.  Numerical 

results relative to the unilateral combined Shewhart-

CUSUM chart for attributes considering the Poisson 

distribution may be found in [9] [10] [11], as well as 

binomial distribution approaches from [12] [13].  

A combined Shewhart-CUSUM chart generally 

assumes four control lines: the upper and lower 

Shewhart limits and the decision interval for the 

CUSUM. It should also show the values of the 

statistics corresponding to the samples (observed or 

standardized) and the values of the cumulative sums 

(positive and negative). Because of this, the analysis 

can become unclear, and some reductions can be 

made according to the case being treated. For 

example, if it is only desired to investigate a 

problem such as increasing the proportion of 

defective parts, an upper unilateral chart may be 

sufficient [14]. 

The unilateral combined Shewhart-CUSUM 

chart for binomial data incorporates a Shewhart np 

control chart for the number of nonconforming units 

and a binomial CUSUM chart on the same axis.  The 

Shewhart np control chart is extensively utilized to 

monitor processes which produce a certain 

percentage of defective parts [15] [16] [17]. It is 

widely used in factories in which the use of the 

statistical process control is in initial implementation 

phase [17].  A binomial CUSUM chart examines the 

number of nonconformities accumulated in a 

sequence of samples.  Its objective is to identify 

either increases or decreases in the number of 

nonconformities.  Thus, a unilateral binomial 

CUSUM chart may be applied to detect an increase 

in the expected value of the rate of nonconforming 

items, from the nominal value  p0 to p1; p0 is the 

proportion of nonconforming items considered to be 

within statistical control, while p1 is the pre-

established proportion outside of statistical control 

to be detected [12] [18] [4]. 

Thus, if Yi were a series of independent samples 

with Zi  of size n and with binomial distribution, 

the combined Shewhart-CUSUM binomial chart is 

obtained through plotting the statistics Ci and Xi, 

with respect to the sequence of samples Yi,  

k),X+,C(=C iii 10max                                     (1) 

where Ci is the CUSUM statistic with 

huu=C ,00 ; Xi is the number of nonconforming 

items in the sample Yi; k is the CUSUM reference 

value and depends upon the magnitude of the change 

one desires to detect, and h is the CUSUM control 

limit. The reference value k for the CUSUM chart is 

determined by the rate of acceptable counts (np0) 
and the rate of counts that one wishes to detect (np1). 

[19] proved that for a binomial CUSUM, the k value 

obtained through the equation below may be 

considered an optimal value (in terms of the ARL) 

in detecting an upward shift of magnitude in the 

parameter p [12].  
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The Upper Control Limit (UCL) from the 

conventional Shewhart np chart is expressed as   

)p(np+np=UCL 00 13  .                      (3) 

These limits are obtained through an 

approximation to the normal distribution for the 

value of the standard error.  The use of the 

approximation is standard procedure in this area, 

however it is suggested that exact limits be 

calculated utilizing the binomial distribution.  

The two lines Ci and Xi, and the two control 

limits, h and UCL (Shewhart Upper Control Limit), 

are then plotted. If Ci goes beyond h or Xi goes 

beyond the UCL, this signifies that the process is not 

in statistical control.   

The Average Run Length (ARL) corresponds to 

the average value of the number of observations 

which must be plotted to indicate a condition out of 

statistical control. ARL0 indicates the average 

number of samples collected until the emission of a 

signal during the period under control, often refered 

to as a false alarm.  ARL1 represents the average 

number of samples collected until the emission of a 

signal that indicates a situation that is truly out of 

control. 

The upper limit h of the CUSUM is determined 

as a function of ARL0 and ARL1. The precise 

relationship among the three parameters (k, h and 

ARL) is not straightforward. There are various 

procedures used in the literature to calculate the 

ARL for a binomial CUSUM.  The most common is 

as a Markov process [20] [21] [22].  Other 

procedures are based on Siegmund’s proposal to 

Wald’s approximations [23] [24], and the work of 

[19] [25].  

Performance measurements for combined charts 

can be calculated in several ways already well 

documented in the literature.  Markov chains were 

applied by [5] [7] [12]; to discrete variables with a 

Poisson distribution, and simulation procedures by 

[14] for continuous variables.  In [1] [26] [27] and 

[4] all approached the combination of control charts 

while considering the probability of false alarms. 

This means that adjusting UCL and h to allocate the 

Type I error of the combination between the 

Shewhart chart and the CUSUM chart. If UCL is 
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tightened, h must be relaxed. This will make the 

combined chart more sensitive to large mean shifts. 

Similarly, if UCL is loosened, h must be tightened, 

and the scheme will be more powerful for detecting 

small shifts [4]. 

In general, if there are 2 control charts 

monitoring the same  variable  and if each chart is 

characterized by the same  probability of type I 

error, then the combined probability (type I error ) 

for the combined control charts is 2, )1(1   , 

where 21 α)(   is the probability that the two 

variables are simultaneously  within their control 

limits. Thus, when two different charts monitor the 

same variable, the false alarm rate of the combined 

chart αcs could be a combination of the individual 

rates of each, αs and αc  for Shewhart (S) and 

CUSUM (C), respectively.  An expression which 

summarizes this combination is given by  

cscscs ααα+α=α  .          (4) 

As such, two control charts with individual false 

alarm rates of 1% for example generate a combined 

chart with a false alarm rate of nearly 2%.  Looking 

to maintain the combined rate at its original value of 

1%, the control limits should be recalculated, 

resulting in values which are at least as distant from 

the center line as before and appropriately more [26] 

[27].    

 

III. METHODOLOGY 
The methodology used in this study has a 

quantitative approach involving simulation models. 

For the procedure of the combined chart, Monte 

Carlo simulations are used. As for the CUSUM 

charts, ARL values are calculated by Markov chains. 

ARL values for the Shewhart chart were also 

obtained by simulation. 

Situations both in and out of statistical control 

were created, with the main characteristic under 

observation being large changes in the rate of 

defectives, and comparing the ARLs of combined 

charts,  individual CUSUM charts and individual 

Shewhart charts. The individual CUSUM charts 

were designed to detect increases of 1.25 (25%) up 

to 3 times (200%) the proportion p0 considered in 

statistical control, see table 1. The percentage 

change in p0 will be called s. Statistical analysis and 

simulations were all performed using R [28] with the 

help of the surveillance package [29].  

 

IV. RESULTS 
Initially, the performance of the combined 

Shewhart-CUSUM chart and individual CUSUM 

charts designed to detect larger values of p1 will be 

compared. The combined chart is designed to 

quickly detect a value of p1 = 1.25 p0, i.e. an 

increase of s = 25% in the value of the proportion 

under control, with k = 6.3, m = 24 and UCL = 15. 

The individual CUSUM charts have reference value 

k calculated to detect proportions p1 = dp0, i.e., p1 = 

1.25p0, 1.5p0, 2p0 and 3p0. The following values 

were also used: p0 = 0.02, n = 50 and ARL0 = 200. 

The parameters of the charts analyzed are shown in 

Table 1.  

Table 2 has the ARL values relative to the 

combined charts and individual CUSUM charts 

mentioned above. Figure 1 has the comparative log 

(ARL) charts of the combined and individual 

CUSUM chart for p1 = 1.25p0.  The use of the 

logarithm improves the visualization of the chart.  

Figure 1 shows that the CUSUM chart and the 

combined chart have virtually the same performance 

for minor changes (approximately p1 ≤ 1.5p0), and as 

the changes increase, the combined starts to 

outperform the CUSUM. 

Figure 2 shows the ARL values of the combined 

chart and the CUSUM chart (CUSUM 1.5) with p1 = 

1.5p0 (s = 50%). 

 

Table 1: Parameters of the Combined Shewhart-

CUSUM chart and individual CUSUM charts for 

ARL0 = 200 

Chart k h UCL 

Combined Shewhart-

CUSUM 

1.12 8.6 5.0 

CUSUM 1.25 (s = 25%) 1.12 8.3  

CUSUM 1.5 (s = 50%) 1.23 6.4  

CUSUM 2.0 (s = 100%) 1.40 5.0  

CUSUM 3.0 (s = 200%) 1.83 3.2  
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Table 2: ARL values relative to the combined charts and individual CUSUM charts for p0 = 0.02, n = 50 and 

ARL0 = 200. Bold numerals are the lowest values in each row. Italics means that CUSUM dominates combined 

charts. 

d Comb. CUSUM1.25 

k=1.12 

CUSUM1.5 

k=1.32 

CUSUM2.0 

k=1.40 

CUSUM3.0 

k=1.83 

1.00 204.00 204.37 203.77 208.4 211.70 

1.10 97.16 94.44 99.19 109.33 126.70 

1.25 44.16 43.86 45.27 50.98 65.75 

1.50 21.11 21.27 20.36 21.51 28.11 

1.75 13.51 13.90 12.67 12.48 15.14 

2.00 9.96 10.36 9.18 8.62 9.60 

2.25 7.85 8.27 7.23 6.58 6.82 

2.50 6.41 6.89 5.98 5.34 5.23 

2.75 5.45 5.90 5.11 4.51 4.24 

3.00 4.71 5.17 4.47 3.92 3.57 

3.25 4.17 4.61 3.98 3.48 3.10 

3.50 3.72 4.18 3.59 3.13 2.75 

4.00 3.01 3.54 3.01 2.63 2.28 

4.5 2.54 3.09 2.61 2.28 1.97 

5.0 2.17 2.76 2.31 2.03 1.76 

7.5 1.26 1.89 1.55 1.38 1.22 
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Figure 1: Comparison of the log (ARL) of the 

combined and CUSUM (1.25) charts for p0 = 0.02, n 

= 50 and      ARL0 = 200 
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Figure 2: Comparison of the log (ARL) of the 

combined and CUSUM (1.5) charts for p0 = 0.02, n 

= 50 and        ARL0 = 200 

 

For moderate changes, near p1 of the individual 

CUSUM, the CUSUM shows the better 

performance. The combined only outperforms the 

CUSUM for changes larger than p1 = 4p0 and as it 

nears p1 = 1.25p0 (Figure 2). 

Figure 3 has the ARL values of the combined 

and CUSUM charts (CUSUM 2.0) for p1 = 2p0 (s = 

100% in p0). The combined chart is more effective 

only for small changes, p1 <1.5 p0 and very large 

changes, approximately p1> 6 p0. 
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Figure 3: Comparison of the log (ARL) of the 

combined and CUSUM 2.0 charts for p0 = 0.02, n = 

50 and ARL0 = 200 

 

In Figure 4, the ARL values of the combined 

chart and CUSUM chart (CUSUM 3.0) can be 

compared for p1 = 3p0 (s = 200%). The individual 

CUSUM has better performance for shifts over p1 = 

2p0. The combined is only more sensitive to minor 

shifts, p1 <2p0 here. 
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Figure 4: Comparison of the log (ARL) of the 

combined and CUSUM 3.0 charts for p0 = 0.02, n = 

50 and ARL0 = 200 

 

Figures 5, 6, 7 and 8 show the rARL analyses. 

The rARL a measurement suggested by [30] in order 

to facilitate comparing ARL values among diverse 

charts. With this measurement, the ARL of the 

combined chart will be compared with respect to the 

ARL of the CUSUM for a specific shift in the value 

of proportion p.   Values of rARL less than one (1) 

imply that the combined chart is more efficient than 

the simple CUSUM in detecting a shift in a 

particular p. 

)(ARL

)(ARL
ARL(p)

p

p
r

CUSUM

combined .                                   (4) 

Through these comparative charts, the earlier 

findings are reinforced. The performance of the 

combined in detection of larger changes is lower 

when compared with the CUSUM procedures 

designed to detect those particular changes. Figure 5 

shows that the combined chart has superior 

performance when compared to the CUSUM (1.25) 

chart for shifts greater than 50% (1,50p0). 
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Figure 5 - Comparison of the rARL of the combined 

and individual CUSUM charts for p0 = 0.02, n = 50 

and  

ARL0 = 200 
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Figure 6 - Comparison of the rARL of the combined 

and and CUSUM 1.5 charts for p0 = 0.02, n = 50 

and ARL0 = 200 
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In Figure 6 it can be seen that the combined 

chart is more effective than the CUSUM (1.5) for 

very small changes (less than 1.25p0), and great 

shifts, more than 4p0. 

Figure 7 shows that the combined chart 

performs better than the CUSUM (2.0) for shifts, 

less than about 1.5p0 and more than 6p0. In Figure 8 

is visualized that the combined chart is more 

effective than the CUSUM (3.0) only for changes 

below about 2p0 and very large shifts, not shown in 

this figure.  
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Figure 7 - Comparison of the rARL of the combined 

and and CUSUM 2.0 charts for p0 = 0.02, n = 50 

and ARL0 = 200 
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 Figure 8 - Comparison of the rARL of the 

combined and and individual CUSUM 3.0 charts for 

p0 = 0.02, n = 50 and ARL0 = 200 

In the next example, the combined chart was 

designed to quickly detect a value of p1 = 1.1p0. The 

individual CUSUM charts have reference value k 

calculated to detect equal proportions p1 equal to 

1.1p0, 1.5p0 and 2p0. The following values were also 

used: p0 = 0.1, p1 = 0.11, n = 100 and ARL0 = 50. 

The parameters of the charts are shown in Table 3. 

 

Table 3: Chart parameters ARL0 = 50 

Tipo k h UCL 

Combinado 10.49 12.6 19 

CUSUM 1.1( s = 10%) 10.49 12.5  

CUSUM 1.5 ( s = 50%) 12.35 5.0  

CUSUM 2.0 ( s =100%) 14.52 2.4  

Shewhart   16.0 

 

Table 4 shows the ARL values obtained. In 

Figure 9, there are the comparative graphs of the log 

(ARL) for the combined and individual CUSUM 

procedures with the above specifications in Table 3. 

In this case, the value of the UCL of the combined is 

19 and the value of h is 12.6. It can be seen that the 

combined chart has performance similar to the 

CUSUM (10%) for small and moderate changes. 

It can be seen that the combined chart has 

performance similar to the CUSUM (s = 10%) for 

small and moderate shifts. The combined chart is 

more effective for larger shifts with values of s 

greater than 50% approximately (Table 4 and Figure 

9). And in this case, for changes on the order of p1 = 

1.4p0 (Table 4), the combined chart outperforms 

both the individual CUSUM chart and the Shewhart 

chart. In fact, it can be observed that for each 

situation there seems to exist a small range of values 

where the combined chart's performance is superior 

to that of the individual schemes. 

This range covers values furthest from the 

magnitude of the desired change of the CUSUM, 

and those values are not very large. This situation 

can be further investigated. The CUSUM procedures 

designed to detect larger shifts (s = 50 and 100%) 

are more effective than the combined chart, 

specifically for these changes (Table 4 and Figures 

10 and 11). In Figure 12, besides comparing the 

combined chart with the CUSUM 2.0 (s = 100% in 

p0), these are compared with a Shewhart procedure, 

in terms of ARL. It appears that the performance of 

the Shewhart chart is similar to the CUSUM 

designed to detect a 100% increase on the process 

mean. 
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Figure 9: Comparison of the log (ARL) of the 

combined and  CUSUM 1.1 charts for  p0 = 0.1, n = 

100 and ARL0 = 50  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Table 4: ARL values relative to the combined charts and individual CUSUM charts for  p0 = 0.1, n = 100 and 

ARL0 = 50   Bold numerals are the lowest values in each row. Italics means that CUSUM or Shewhart 

dominates combined charts. 

d comb CUSUM1.1 CUSUM1.5 CUSUM2.0 Shewhart 

1.0 53.29 52.08 50.27 47.50 48.90 

1.1 16.58 16.31 19.01 21.21 22.06 

1.2 8.69 8.52 9.12 10.93 11.47 

1.3 5.77 5.68 5.33 6.37 6.66 

1.4 4.26 4.28 3.61 4.12 4.29 

1.5 3.39 3.46 2.70 2.92 3.05 

1.6 2.78 2.92 2.16 2.22 2.29 

1.7 2.34 2.54 1.82 1.80 1.86 

1.8 2.02 2.26 1.59 1.53 1.56 

1.9 1.77 2.05 1.42 1.35 1.37 

2.0 1.56 1.87 1.3 1.23 1.24 
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Figure 10: Comparison of the log (ARL) of the 

combined and CUSUM  1.5 charts for  p0 = 0.1, n = 

100 and ARL0 = 50    
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Figure 11: Comparison of the log (ARL) of the 

combined, and CUSUM 2.0 charts for p0 = 0.1, n = 

100 and ARL0 = 50 
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Figure 12: Comparison of the log (ARL) of the 

combined, and Shewhart charts for  p0 = 0.1, n = 100 

and ARL0 = 50 

 

So, the combined chart outperforms the 

individual CUSUM for changes of greater 

magnitude, when compared with the individual 

CUSUM chart with the same p1 design proportion. 

Regarding the other CUSUM charts, which are 

designed to detect larger changes, their performance 

is lower, in the range of the values analyzed. 

 

V. CONCLUSIONS 
Traditional Shewhart control charts are 

considered effective in the detection of significant 

changes in the mean of the process, whereas 

cumulative sum (CUSUM) control charts are 

suitable for detecting small and moderate changes. 

However none of the charts mentioned will perform 

well in all situations. To solve this problem, we 

recommend to combine multiple charts to cover 

changes of various magnitudes. The combined 

Shewhart-CUSUM chart is intended to increase the 

sensitivity of the CUSUM procedure for larger 

changes. 

In this paper, the combined chart was compared 

in terms of ARL, to other CUSUM procedures 

designed to detect larger changes, based on the 

results of simulations. Two analyses were 

performed: one on the combined chart compared to 

individual CUSUM procedures and another one on 

the combined chart compared to the Shewhart 

procedure. The combined chart increases sensitivity 

of a CUSUM to changes larger than those for which 

the chart is designed. Thus, if the process requires 

detect sooner a particular shift, small or moderate, a 

combined chart is a suitable option, since it allows 

to detect the shifts set out in the planning, and offers 

the possibility of detecting major changes. Thus, if 

the process requires rapid identification of change, 

small or moderate, a combined chart is a suitable 

option, since it allows to detect the changes set out 

in the planning and offers the possibility of detecting 

major changes.If the process only requires a quick 

identification of a specific large shift, other 

procedures are recommended, such as the individual 

CUSUM or a Shewhart chart. 
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